Potential Antiradiation Drugs: α -Alkyloximinonitriles

By DOMINICK A. COVIELLO

Of three α -alkyloximinonitriles tested for radiation protection, two were very toxic and inactive, while one with low toxicity gave slight protection.

MANY classes of compounds including nitriles have shown varying degrees of protection against radiation damage in mammals. It has been suggested that conceivably the nitriles act by the slow sustained-release of HCN which is protective (1). If the theory has merit, it was postulated that α -alkyloximinonitriles, reacting with water in the cellular milieu, could yield an intermediate which would decompose to yield HCN and an O-alkylhydroxamic acid according to Scheme I.

It is interesting to note (Table I) that 1-benzyloximinobutanecarbonitrile gives slight protection, and has an LD₅₀ of about 1000 mg./Kg. while the other two, 1-benzyloximinopropanecarbonitrile and 1-benzyloximinoheptanecarbonitrile, give no protection with LD₅₀'s of less than 50 mg./Kg.

Some of the nitriles were previously reported (2). The new compounds were characterized by the

-

H2O + HCN Scheme I

RADIATION PROTECTION

R-C-CN ∥ NOR′

C		T F0	Test	Test
R	R'	ng./Kg.	mg./Kg.	Evaluation
CH3	C6H5CH2	Less than 50	50-150 150-350	No protection No protection
C2H5	$C_6H_5CH_2$	1000–1500	350-700 700-1000	No protection Slight protec- tion
C ₅ H ₁₁	C6H6CH2	Less than 50	150350 350700	No protection No protection

R-C-CN

NOR'

Compd.		D -	40	TT 11	CN Stretch
ĸ	R	ь.р.	$n_{\rm D}/l^2$	x leid	cm. 1
Methyl	Methyl	132 - 133 / 760 mm.	1.4336/20°	54	2230
Methyl	Ethyl	147–148/760 mm.	1.4241/24°	58	2230
Methyl	Benzyl	80-85/0.03 mm.	1.3815/26°	21	2236
Ethyl	Ethyl	166-167/760 mm.	1.4258/28°	60	2230
Ethyl	Benzyl	102-105/0.5 mm.	$1.5179/25^{\circ}$	17	2235
Butyl	Methyl	84–85/15 mm.	$1.4300/25^{\circ}$	55	2240
Butyl	Ethyl	87-89/15 mm.	$1.4325/26^{\circ}$	50	2240
Butyl	Benzyl	96–98/0.01 mm.	$1.5087/25^{\circ}$	45	2240
Amyl	Benzyl	123–125/0.1 mm.	$1.475/6^{\circ}$	29	2248

characteristic nitrile absorption in the infrared (3)

Received August 12, 1966, from the College of Pharmacy, University of Illinois at the Medical Center, Chicago 60612. Accepted for publication October 26, 1966. This investigation was supported in part by grant DH

Accepted for publication October 26, 1966. This investigation was supported in part by grant RH 00293-01 (MCHB) and RH 00293-02 (MCHB) from the Division of Radiological Health, Bureau of State Services (EH), U. S. Public Health Service, Bethesda, Md. Biological testing and test data have been made avail-able through the courtesy of Dr. David Jacobus, Walter Reed Institute of Research, Washington, D. C. The technical assistance of J. C. Ziebell and W. L. Jacobson is also acknowledged.

is also acknowledged.

and by alkaline hydrolysis back to the starting acids. They are shown in Table II.

The amide precursors for the nitrile preparation have been reported (4).

REFERENCES

Thomson, J. F., "Radiation Protection in Mammals," Reinhold Publishing Corp., New York, N. Y., 1962.
Coviello, D. A., J. Pharm. Sci., 53, 972(1964).
Nakanishi, K., "Infrared Absorption Spectroscopy---Practical," Holden-Day, Inc., San Francisco, Calif., 1962.
Coviello, D. A., J. Med. Chem., 7, 121(1964).